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Polarization Dependence of Pure Bending Loss in Slab

Optical Waveguides

Junji YAMAUCHI', Osamu SAITO', Minoru SEKIGUCHI',

SUMMARY The finite-difference beam-propagation method
is applied to the analysis of a bent step-index slab optical waveg-
uide. The results obtained in the rectangular coordinates with
a modified index profile are compared with those in the cylin-
drical coordinates with a real index profile. It is found that the
attenuation constant for TMp mode is larger than that for TEp
mode. The polarization dependence of bending loss is negligible,
provided the refractive index difference is less than 2%.
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1. Introduction

Considerable effort has been made to evaluate bending
loss of dielectric slab waveguides [1]-[14]. In addi-
tion to the WKB method and perturbation method, the
beam-propagation method [5]-[7],[9]-[14] is currently
used to analyze bent optical waveguides. However, most
of works treated TE modes, and the bending loss for
TM modes received little attention [13],[15].

The purpose of this letter is to evaluate the pure
bending loss (attenuation constant) of a bent step-index
slab waveguide, and to clarify the polarization depen-
dence. In the analysis, we use the finite-difference beam-
propagation-method (FD-BPM) based on the Crank-
Nicholson scheme [16]-[18]. The BPM analysis has
the advantage that it gives information on the transient
properties of fields, when a bent waveguide is excited
with a guided mode of a straight waveguide.

After confirming the validity of use of an equiva-
lent straight waveguide with a modified index profile, we
assess the accuracy of the transverse differential opera-
tor with index change derived by Stern [ 19]. Numerical
simulation for TM mode in a bent waveguide shows that
the deformed electric field propagates having disconti-
nuity at the interface between the core and cladding. It
is found that the attenuation constant for TMy mode is
larger than that for TE; mode.

2. Formulation
A step-index slab waveguide with a core width of 2D

is considered. The refractive indices of the core and
cladding are designated as Nco and Ngy,, respectively.
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Ngy is fixed to be unity and the normalized frequency
is chosen to be V = kD(NZ, — N2,;)"/? = 1.5, where
k is the wavenumber in free space. The wavelength
A = 1.55um is used throughout this analysis. The bend-
ing radius is designated as R. We use the normalized
bending radius [2]—[4] defined as

R, = 2Ngok(1 — N2, /N%o)*/*R. (1)

We have two approaches for investigating the prop-
agating field and the attenuation constant in a bent op-
tical waveguide. One is to use the cylindrical coordinate
system with a real index profile [13],[14]. The other is
to use the rectangular coordinate system together with a
modified index profile for an equivalent straight waveg-
uide [20]. We first compare the two approaches in TE
mode.

In the cylindrical coordinates shown in Fig. 1 (a),
we get the Fresnel equation expressed as
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where ng is the reference index, which is taken to be
that in the cladding.

In the rectangular coordinates shown in Fig. 1(b),
we get the Fresnel equation expressed as
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The index profile of the waveguide is transformed to

2jkno—— + K’ [n? — ndl¢. (3)

ng (x)

-DO0D
(a) (b)

(a) cylindrical coordinates with a real index profile.
(b) rectangular coordinates with a modified index profile.

Fig. 1 Configuration and coordinate system of a bent
step-index waveguide.
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Fig. 2 Comparison between the normalized attenuation con-
stants obtained in the cylindrical coordinates with a real index
profile and in the rectangular coordinates with a modified index
profile.

that of an equivalent straight waveguide. If the bend-
ing radius R is much larger than the core width, the
index profile of the equivalent straight waveguide can
be expressed as

np(z) = n(z)[l + (z/R)], “

where n(z) is the real index profile of the waveguide
and z is perpendicular to the core axis.

Maruta and Matsuhara [11] analyzed Eq.(2) us-
ing the Galerkin method. In this paper, we solve each
of Egs.(2) and (3) by the FD-BPM to easily com-
pare both results. Application of the Crank-Nicholson
scheme to Eq.(2) is straightforward [14]. The trans-
parent boundary condition [21] can be imposed at the
edge of the computational window. As the initial field,
the fundamental-mode field of the straight waveguide is
used.

For convenience, we use the following normalized
attenuation constant L,, per unit radian [2]-[4],

L, = aR(1— N, /NEo)"?. (5)

Figure 2 shows a comparison between the normal-
ized attenuation constants calculated by Egs.(2) and
(3). The parameters are Noo/Neor, = 1.03, Az = Ar =
D/20 = 0.07497um, Az = As = 0.5um, and the total
number of sampling points in the transverse direction is
Mp = 1024. It is worth mentioning that good correla-
tion is found to exist between both results even in rela-
tively small bending radii. In this paper, we adopt the
rectangular coordinates with the modified index profile
for the following investigation.

Consideration is next given to the TM mode anal-
ysis. Care has to be taken when we treat TM modes,
since the transverse differential operators include the in-
dex change. The formulation can be made by either the
transverse electric or magnetic field. For the E formu-
lation based on the transverse electric field, we have to
evaluate

g (1 9
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Fig. 3 Comparison in the mode-mismatch loss of a straight
step-index waveguide.

For the H formulation based on the transverse magnetic
field, we have to evaluate

2.0 (10,
Oz \n2? 0z /°
To evaluate the transverse differential operators, Huang
et al. [17] and Liu et al. [18] employed the expression
derived by Stern [19]. For the H formulation, we have
2 o 1 8Hy a; H;_1 — 2b;H; + c; H;
n -— —_— =
8z \ n? Oz Az?

(6

where a;, b; and c¢; are defined in Ref.[19]. Similar
operator can also be obtained for the E formulation.
Alternatively, we can directly derive the following finite-
difference expression instead of Eq. (6):

n2 O (L0Hy
Oz \ n2 Oz

=5z (Ni+1)Hip1 — 2H; — (N; — 1)H; 1), (7)

where
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To assess the accuracy of Egs. (6) and (7), we eval-
uate the mode-mismatch loss in a straight waveguide.
The mismatch between input field and calculated out-
put field is known to be a sensitive indicator of the
accuracy of a beam-propagation method [16]. Figure 3
shows the comparison in the mode-mismatch loss as a
function of the number of sampling points in the core,
Meco(= 2D/Axz). As Mco is increased, Az decreases
and My increases, since the computational window di-
mension is fixed to be 76.772um. Other numerical pa-
rameters are the same as those in Fig.2. As expected,
the accuracy improves as M¢go is increased. It is in-
teresting to note that the result obtained from Stern’s
expression has better accuracy than that from Eq. (7).
Hence, we adopt the Stern’s expression in the following
analysis.
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Fig. 4 Normalized attenuation constant as a function of the
number of sampling points in the core.

3. Results

Before discussing the polarization dependence, we first
investigate the convergence of numerical results, since
the accuracy of the numerical results depends on the
size of the discretization mesh. Figure 4 shows the nor-
malized attenuation constant L,, as a function of M¢o.
The normalized bending raidus R, is taken to be 50,
and the computational window dimension is fixed to
be 76.772um, which gives My = 1024 for Moo = 40.
Other geometrical and numerical parameters are the
same as those in Fig.2. It is seen that both results for
the TE and TM modes tend to converge as Mg is in-
creased. It can be said that the sufficient value of Moo
is 40, which corresponds to Az = D /20 = 0.07497um.
Further calculation shows that the results are not sensi-
tive to the change in Az, as long as Az < 0.5um. We
adopt Az = D/20, Az = 0.5um, and My = 1024 in the
following analysis.

A typical example of the propagating electric field
for TM mode is shown in Fig.5. The bent waveguide
with R, = 50 is excited with the field of the fundamen-
tal mode TMy of the straight waveguide, which can be
obtained analytically. It should be noted that the elec-
tric field is discontinuous at the interface between the
core and cladding. _

Since the mode of a straight waveguide differs from
that in a bent waveguide, the strong radiation occurs
when the incident field enters the bent waveguide. This
radiation is closely related to the transition loss. As the
field propagates, the field tends to exhibit a steady state,
in which the field deforms and its maximum shifts to-
wards the outer side of the bend. The field deformation
results in the pure bending loss (attenuation constant).

Figure 6 shows the normalized attenuation con-
stant L,, as a function of the normalized bending radius
R,.. As expected, L, becomes large as R, is decreased.
It is found that L,, for TMg mode is larger than that for
TEy mode.

Figure 7 shows L, as a function of Ngo/Ncr.
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Fig. 5 Propagating electric field when the bent waveguide is
excied with the field of TMy mode in the straight waveguide. -
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Fig. 6 Normalized attenuation constant as a function of nor-
malized bending radius R,,.
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Fig. 7 Normalized attenuation constant as a function of refrac-
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In this calculation, the bending radius is R = 600um,
which corresponds to R,, = 68.9 for Noo/Neyr, = 1.03.
As Noo/Ney is increased, L,, decreases. It is obvious
that the polarization dependence of bending loss be-
comes large as Noo/N¢y, is increased. The difference
in bending loss for the TE and TM modes is negligible,
provided the refractive index difference is less than 2%.
In other words, the scalar analysis is enough to evaluate
the bending loss if the index difference is less than 2%.
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4. Conclusions

The propagating field and the pure bending loss in a
slab optical waveguide have been investigated by the
finite-difference beam-propagation method. It is numer-
ically confirmed that the attenuation constant evaluated
in the rectangular coordinates with a modified index
profile for an equivalent straight waveguide agrees well
with that in the cylindrical coordinates with a real in-
dex profile. Preliminary calculation also shows that the
transverse differential operator with the index change
can be accurately calculated by the Stern’s expression.
It is found that the attenuation constant for TMgy mode
is larger than that for TE; mode. The polarization
dependence of bending loss is negligible, provided the
refractive index difference is less than 2%.
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